最近,《Science》子刊《Science Advances》上发表的一篇论文称,
研究团队开发了一种能够窥探硅晶体内部结构的非侵入性成像技术。
这很有可能成为测试常规硅基芯片的有效方法,且可能为下一代的量子计算技术奠定基础。
这支来自奥地利林茨大学、伦敦大学学院、苏黎世联邦理工学院和瑞士洛桑联邦理工学院的国际团队
将现有成熟的显微技术——扫描微波显微镜(Scanning Microwave Microscopy, SMM)运用到对硅芯片中人工掺入杂质的检测当中,整个成像过程不会对芯片产生任何损害(半导体中会被掺入杂质来增强其导电和光学性质)。
图丨磷-硅材料成像
扫描微波显微镜在生物细胞和新材料方面有广泛应用,其中包括石墨和其它半导体材料。它的工作原理结合了原子力显微镜(Atomic Force Microscope, AFM)和矢量网络分析仪 (Vector Network Analyzer, VNA)——二者分别有测量样品特定部分的纳米探针,以及往探针上传输的微波信号的装置
。该信号会在样本中反射,并回到矢量网络分析仪中进行计算,最后整套仪器会反馈样本的三维图像和电学性质。
研究者使用扫描微波显微镜扫描样本,具体探测了硅晶表层下成一定规律排列的磷原子的电学性质。
在这一方法下,研究者成功检测了在表面4-15纳米之下的1900-4200个紧密排列的原子。
当然,诸如二次离子质谱分析法(Secondary Ion Mass Spectrometry, SIMS)之类的技术也可以用于检测半导体中人工参入的杂质,
但是扫描微波显微镜的主要优势是,它不会对样本有任何损坏。
在 IEEE Spectrum 的一个邮件采访中,本实验的领导者、奥地利林茨大学的 Georg Gramse 表示:
“从对硅芯片扫描的新技术中,我们能预见到对全球行业的潜在冲击。因为在芯片集成电路越来越小的情况下,测量过程已经变得无比困难且耗费时间,而且可能会损坏芯片本身。”
图丨SMM和VNA对材料的测量结果
除了对硅基芯片的一系列影响,Gramse相信,这项技术可能对未来的磷-硅量子计算机的制造工艺做出贡献。
与经典计算机基于晶体管(晶体管的开关对应二进制的0和1)的工作原理不同,
量子计算通过既可以代表0又可以代表1的量子比特处理数据。
四年前,人们开始用制造传统计算机的硅材料制造量子计算机,但难点在于硅晶体中磷原子的植入,而磷原子的自旋正是量子比特承载体。
新的成像技术对磷-硅量子计算机的实现奠定了基础,
因为人们能把扫描微波显微镜集成到现有的探测仪器中。这将大大加快三维结构的制造速度,因为该技术也能被应用于光刻工艺中原子掺杂的迭代控制。
Gramse最后说:
“目前,我们正在研究磷原子层的物理性质,这将是通往磷-硅量子计算机的下一步。”
本文地址:http://www.cj8845.cn/55575.html
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 931614094@qq.com 举报,一经查实,本站将立刻删除。